volume difference inequalities for the projection and intersection bodies

Authors

c. j. zhao

w. s. cheung

abstract

in this paper, we introduce a new concept of volumes difference function of the projection and intersection bodies. following this, we establish the minkowski and brunn-minkowski inequalities for volumes difference function of the projection and intersection bodies.

Upgrade to premium to download articles

Sign up to access the full text

Already have an account?login

similar resources

Volume difference inequalities for the projection and intersection bodies

In this paper, we introduce a new concept of volumes difference function of the projection and intersection bodies. Following this, we establish the Minkowski and Brunn-Minkowski inequalities for volumes difference function of the projection and intersection bodies.

full text

Inequalities for Mixed Complex Projection Bodies

Complex projection bodies were introduced by Abardia and Bernig, recently. In this paper some geometric inequalities for mixed complex projection bodies which are analogs of inequalities for mixed real projection bodies are established.

full text

Inequalities for dual quermassintegrals of mixed intersection bodies

In this paper, we first introduce a new concept of dual quermassintegral sum function of two star bodies and establish Minkowski's type inequality for dual quermassintegral sum of mixed intersection bodies, which is a general form of the Minkowski inequality for mixed intersection bodies. Then, we give the Aleksandrov– Fenchel inequality and the Brunn–Minkowski inequality for mixed intersection...

full text

On Inequalities for Quermassintegrals and Dual Quermassintegrals of Difference Bodies

In this paper, inequalities for quermassintegrals and dual quermassintegrals of difference bodies are given. In particular, an extension of the Rogers-Shephard inequality is obtained. Mathematics subject classification (2010): 52A40, 52A20.

full text

Projection Inequalities and Their Linear Preservers

This paper introduces an inequality on vectors in $mathbb{R}^n$ which compares vectors in $mathbb{R}^n$ based on the $p$-norm of their projections on $mathbb{R}^k$ ($kleq n$). For $p>0$, we say $x$ is $d$-projectionally less than or equal to $y$ with respect to $p$-norm if $sum_{i=1}^kvert x_ivert^p$ is less than or equal to $ sum_{i=1}^kvert y_ivert^p$, for every $dleq kleq n$. For...

full text

Volume Inequalities for Sets Associated with Convex Bodies

This paper deals with inequalities for the volume of a convex body and the volume of the projection body, the L-centroid body, and their polars. Examples are the Blaschke-Santaló inequality, the Petty and Zhang projection inequalities, the Busemann-Petty inequality. Other inequalities of the same type are still at the stage of conjectures. The use of special continuous movements of convex bodie...

full text

My Resources

Save resource for easier access later


Journal title:
bulletin of the iranian mathematical society

Publisher: iranian mathematical society (ims)

ISSN 1017-060X

volume 41

issue 3 2015

Hosted on Doprax cloud platform doprax.com

copyright © 2015-2023